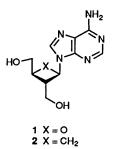
Chemoenzymatic Synthesis of Carbocyclic Oxetanocin-A Involving a Novel Photochemical Rearrangement


lan C. Cotterill and Stanley M. Roberts

Department of Chemistry, Exeter University, Exeter, Devon EX4 4QD, UK

The anti-herpes agent carbocyclic oxetanocin-A (-)-2 has been prepared from the bicyclic ketone 3 via resolution of the bromohydrin 4 (using an enzyme-catalysed trans-esterification reaction) and a photocatalysed rearrangement of the epoxide (+)-6 to the lactone (+)-7.

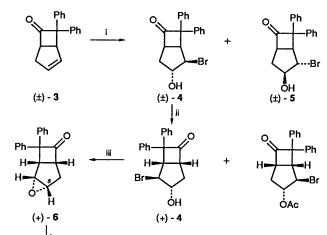
There is considerable current interest in the synthesis of carbocyclic nucleosides ¹ because of their interesting biological activity.² In some cases this activity mimics that of the corresponding oxygen heterocycle³ but, interestingly, in other instances it does not.⁴

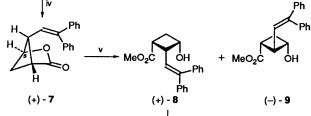
In the case of the four-membered ring compound oxetanocin-A 1 and the corresponding carbocyclic compound 2, potent antiviral activity is exhibited by both compounds and, as a consequence, the cyclobutane derivative 2 has been the subject of close scrutiny.⁵ We report a new synthesis of 2 in optically active form, utilising a route which could be adapted to provide a wide range of novel analogues.

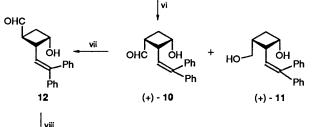
The bicyclic ketone 3 (Scheme 1) is readily prepared by cycloaddition of cyclopentadiene and diphenylketene.⁶ Treatment of this ketone with N-bromoacetamide in aqueous acetone provided the bromohydrin 4 (73%) which was readily separated from the isomeric impurity 5 (12%).⁷ The bromohydrin was resolved by acylation using vinyl acetate and immobilised *Mucor miehei* lipase (Lipozyme[®])⁸ and the optically pure bromohydrin (+)-4 (42%) was converted into the epoxide (+)-6 (90%) using base.

Photolysis of this epoxide in dry benzene using a 400W lamp over 4 h furnished the lactone (+)-7⁹ which was converted into the ester (+)-8 (85%) by acid-catalysed methanolysis. Compound (-)-9 was also produced from (+)-7 (8% yield): since the starting compound (+)-7 was pure, as judged by ¹H and ¹³C NMR spectroscopy, the mechanism of formation of this impurity is not clear.

Reduction of the ester (+)-8 using diisobutylaluminium hydride (DIBAL-H) in toluene at -100 °C gave the required aldehyde (+)-10 (74%) and a small amount of the over-reduced compound (+)-11 (15%). Treatment of the aldehyde (+)-10 with triethylamine in toluene at 90 °C afforded the isomeric compound 12 (60% yield; 70% based on starting material consumed). The latter compound was reduced with DIBAL-H to give the corresponding diol (70%) which was treated with *tert*-butyldiphenylsilyl chloride and base in dichloromethane at 0 °C to give the desired material (+)-13 (85%) and the diprotected compound 14 (7%).

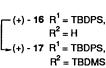

Ozonolysis of the alcohol (+)-13 was troublesome and, apart from benzophenone, no products could be identified. However, conversion of the alcohol (+)-13 into the mesylate (+)-15 (90%) gave a compound which was cleaved rapidly and cleanly by ozone using a mixture of dichloromethane in methanol as the solvent at -78 °C. Sodium borohydride reduction of the crude reaction mixture provided the alcohol (+)-16 (77%) which was converted into the disilylated compound (+)-17(95%) in standard fashion. The optimum conditions for the reaction of the mesylate (+)-17 with adenine consisted of heating the two compounds in dimethylformamide at 140 °C in the presence of sodium hydride and 18-crown-6 whereupon the purine derivative (-)-18 was isolated in 41% yield. Deprotection (tetrabutylammonium fluoride in tetrahydrofuran at room temperature) furnished the desired carbocyclic compound (-)-2 (91%) $[\alpha]_{D}^{27}$ -36.6 (c 0.95 pyridine) {lit.,⁵ $[\alpha]_{D}$ -45.7 (c 1.00 pyridine)} with physical properties identical with those described previously.5


Thus, from the readily obtained ester $8,^9$ now available in optically active form, carbocyclic oxetanocin-A can be prepared in nine steps and 8% overall yield.

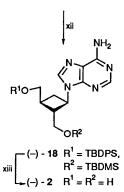

Experimental

(1S,2S,3S)1-Methylsulfonyloxy-2-hydroxymethyl-3-tert-

butyldiphenylsilyloxymethylcyclobutane 16.—Argon was passed through a stirred solution of the mesylate (+)-15 (96 mg, 0.16 mmol) in a mixture of dry dichloromethane (4.0 cm³) and dry methanol (8.0 cm³) for 15 min. The solution was cooled to -78 °C and dry ozone/oxygen was passed through it for 2 h. Argon was then passed through the solution for 15 min after which time sodium borohydride (31 mg, 0.80 mmol) was added. The reaction mixture was stirred at -78 °C for 30 min and allowed to warm to room temperature. The solvent was evaporated and the reaction mixture was cooled to 0 °C when aqueous ammonium chloride $(10\% \text{ w/v}, 3.0 \text{ cm}^3)$ was added. The aqueous solution was extracted with dichloromethane $(3 \times 5.0 \text{ cm}^3)$ and the combined organic extracts were washed with water (5.0 cm^3) , dried and evaporated to give a pale yellow oil. Chromatography of the latter over silica gel [eluent:dichloromethane-acetone (25:1 v/v)] gave the alcohol (+)-16 (55.2 mg, 77%) as a colourless, viscous oil; $[\alpha]_{D}^{24} + 12.6$ (c 1.0 in MeOH); v_{max}(film)/cm⁻¹ 3561 (OH), 1428 and 1175 (OSO₂); δ_H 7.72–7.35 (10 H, m, ArH), 5.27 (1 H, m, 1-H), 3.92 (1 H, dd, J 8, 11.5, CH_AOH), 3.74 (1 H, dd, J 5.5, 11.5, CH_BOH), 3.69-3.57 (2 H, m, CH₂OTBDPS), 3.02 (3 H, s, OSO₂CH₃),



R¹O



ix (+) - 13 R¹ = TBDPS, R² = H (+) - 14 R¹ = R² = TBDPS (+) - 15 R¹ = TBDPS, R² = SO₂Me

ÓSO₂Me OR²

Scheme 1 Reagents and conditions: i, N-bromoacetamide, Me₂CO, H₂O, 6 h, room temp.; ii, Lipozyme, vinyl acetate, 42 °C, 10 days; iii, K₂CO₃, MeOH, 1 h, room temp.; iv, hv (400W), dry C₆H₆, room temp., 4 h (44%); v, p-MeC₆H₄SO₃H, MeOH, 12 h, room temp.; vi, HAlBu¹₂, toluene, -100 °C, 2 h; vii, Et₃N, toluene, 90 °C, 4 h; viii, HAlBu¹₂, toluene, -78 °C room temp., 3 h then Bu'Ph₂SiCl, dimethylaminopyridine, Et₃N, CH₂Cl₂, 0 °C, 4 h; ix, p-MeSO₂Cl, Et₃N, CH₂Cl₂, room temp.; x, O₃, CH₂Cl₂/MeOH, -78 °C, 2 h then NaBH₄; xi, Bu'Me₂SiOSO₂CF₃, Et₃N, CH₂Cl₂, room temp., 1 h; xii, adenine, DMF, NaH, 18-C-6, 140 °C, 16 h; xiii, Bu₄NF, THF, room temp, 2 h

2.84–2.72 (1 H, m, 2-H), 2.44–2.30 (3 H, m, 3-H and 2 × 4-H), 1.86 (1 H, br s, OH) and 1.09 (9 H, s, Bu'); $\delta_{\rm C}$ 133.25 (C, C-Ar), 135.59, 129.83 and 127.79 (3 × CH, C-Ar), 75.55 (CH, C-1), 65.38 and 61.20 (2 × CH₂, CH₂OH and CH₂OTBDPS), 45.61 (CH, C-2), 38.05 (CH₃, OSO₂CH₃), 35.21 (CH, C-3), 30.36 (CH₂, C-4), 26.89 (CH₃, Bu') and 19.26 (C, Bu') (Found: M + H⁺, 449.182. C₂₃H₃₂O₅SSi requires M + H, 449.182).

Acknowledgements

We thank the SERC for an Instant Award (to I. C. C.).

References

- 1 A. D. Borthwick and K. Biggadike, Tetrahedron, 1992, 48, 571.
- 2 V. E. Marquez and M.-I. Lim, Med. Res. Rev., 1986, 6, 1.
- 3 See for example, J. Balzarini, H. Baumgartner, M. Bodenteich, E. De Clercq and H. Griengl, J. Med. Chem., 1989, **32**, 1861; K. Tadano, H. Kimura and S. Ogawa, Bull. Chem. Soc. Jpn., 1989, **62**, 1355.
- A. D. Borthwick, D. N. Evans, B. E. Kirk, K. Biggadike, A. M. Exall,
 P. Youds, S. M. Roberts, D. J. Knight and J. A. V. Coates, *J. Med. Chem.*, 1990, 33, 179;
 A. D. Borthwick, B. E. Kirk, K. Biggadike,
 A. M. Exall, S. Butt, S. M. Roberts, D. J. Knight, J. A. V. Coates and
 D. M. Ryan, *J. Med. Chem.*, 1991, 34, 907.
- 5 Y. Ichikawa, A. Narita, A. Shiozawa, Y. Hayashi and K. Narasaka, J. Chem. Soc., Chem. Commun., 1989, 1919; G. S. Bisacchi, A. Braitman, C. W. Cianci, J. M. Clark, A. K. Field, M. E. Hagen, D. R. Hockstein, M. F. Malley, T. Mitt, W. A. Slusarchyk, J. E. Sundeen, B. J. Terry, A. V. Tuomari, E. R. Weaver, M. G. Young and R. Zahler, J. Med. Chem., 1991, 34, 1415.
- 6 R. Huisgen and P. Otto, Chem. Ber., 1969, 102, 3475.
- 7 Cf. Z. Grudzinski and S. M. Roberts, J. Chem. Soc., Perkin Trans. 1, 1975, 1767.
- 8 I. C. Cotterill, A. G. Sutherland, S. M. Roberts, R. Grobbauer, J. Spreitz and K. Faber, J. Chem. Soc., Perkin Trans. 1, 1991, 1365.
- 9 H. G. Davies, S. S. Rahman, S. M. Roberts, B. J. Wakefield and J. A. Winders, J. Chem. Soc., Perkin Trans. 1, 1987, 85.

Paper 2/04375K Received 12th August 1992 Accepted 24th August 1992